### 2 x 2 Interactions

#### **Simple Effects**:

$$a_1b_2 - a_1b_1$$

$$a_2b_1 - a_1b_1$$

$$a_2b_2 - a_1b_2$$

$$a_2b_2 - a_2b_1$$

#### Main Effects:

$$A = \frac{1}{2}[(a_2b_2 - a_1b_2) + (a_2b_1 - a_1b_1)]$$

$$B = \frac{1}{2}[(a_2b_2 - a_2b_1) + (a_1b_2 - a_1b_1)]$$

#### Interaction Effect:

$$AB = \frac{1}{2}[(a_2b_2 - a_1b_2) - (a_2b_1 - a_1b_1)]$$

## Factorial Experiments 2 x 2 Interactions

#### **Simple Effects**







# Factorial Experiments 2 x 2 Interactions





# Factorial Experiments Mean Comparisons

### Interaction not significant

- 1. The effect of each treatment does not vary among levels of the other treatment. Simple effects equal across treatment levels.
- 2. Analysis of means should focus on main effect means.
- 3. For qualitative treatments where no preplanned comparisons are suggested by treatment structure use an lsd or another multiple comparison procedure.
- 4. For qualitative treatments where treatment structure suggests preplanned comparisons use linear contrasts to test the hypotheses.
- 5. For quantitative treatments explore the nature of the response with orthogonal polynomial contrasts and fit the data with an appropriate function.

# Factorial Experiments Stockpiled Tall Fescue Example

#### **Treatments**

N Source – organic, urea N Rate – 50, 100, 150, 200 lb/acre

#### **ANOVA**

|             |    |          | Mean     |         |        |
|-------------|----|----------|----------|---------|--------|
| Source      | DF | SS       | Square   | F Value | Pr > F |
| Rate        | 3  | 18458041 | 6152680  | 170     | <.0001 |
| Source      | 1  | 425189.5 | 425189.5 | 11.75   | 0.0022 |
| Rate*Source | 3  | 20475.15 | 6825.05  | 0.19    | 0.9031 |

Because there is no interaction between source and rate of N fertilizer the effect of each main factor should be evaluated separately.

# Factorial Experiments Stockpiled Tall Fescue Example

| Source  | Mean    | N  | Group |  |  |  |  |
|---------|---------|----|-------|--|--|--|--|
| Urea    | 2083.36 | 16 | Α     |  |  |  |  |
| Organic | 1852.82 | 16 | В     |  |  |  |  |
|         |         |    |       |  |  |  |  |
| Rate    |         |    |       |  |  |  |  |
| 200     | 2902.42 | 8  | Α     |  |  |  |  |
| 150     | 2384.80 | 8  | В     |  |  |  |  |
| 100     | 1709.69 | 8  | С     |  |  |  |  |
| 50      | 875.45  | 8  | D     |  |  |  |  |

## **Factorial Experiments** Mean Comparisons

#### Interaction significant

- 1. The effect of each treatment varies among levels of the other treatment.
- 2. Analysis of means should focus on interaction means.
- 3. When both factors are qualitative:
  - · Perform a multiple comparison procedure to identify the best treatment combinations
  - Use contrasts to test specific hypotheses about the treatment means.
- 4. When one factor is qualitative and the other quantitative examine the functional response of the quantitative factor over each level of the qualitative factor.
- 5. When both factors are quantitative fit an appropriate response surface.

## **Factorial Experiments**

Example: Seeding Date x Rate Study

Model: 
$$Y_{ijk} = \mu + D_i + R_j + DR_{ij} + \varepsilon_{(ij)k}$$

Date

 $D_i$  i = 1, 2, 3  $R_j$  j = 1, 2Rate

#### There are 6, 2-way means:

**D1R1** 

D1R2

**D2R1** 

D2R2

**D3R1** 

**D3R2** 



Example: Seeding Date x Rate Study

#### **Treatment Means**

| Trt | Date | Rate | Mean    |
|-----|------|------|---------|
| 4   | 2    | 2    | 214.0 A |
| 6   | 3    | 2    | 207.9 A |
| 3   | 2    | 1    | 178.2 B |
| 5   | 3    | 1    | 159.9 C |
| 2   | 1    | 2    | 144.0 D |
| 1   | 1    | 1    | 120.2 E |

$$|Isd_{.05} = 2.179\sqrt{\frac{2(27.132)}{3}} = 9.26$$

Example: Seeding Date x Rate Study

For the comparison:  $\mu_{11} - \mu_{12}$ 

1) Write the hypothesis in terms of model parameters:

$$\mu + D_1 + R_1 + DR_{11} - (\mu + D_1 + R_2 + DR_{12})$$

2) Gather like terms:

$$(1-1)\mu + (1-1)D_1 + (1)R_1 + (-1)R_2 + (1)DR_{11} + (-1)DR_{12}$$

3) Coefficients for the contrast are:

for rate 1-1 for date\*rate 1-10000;

SAS code:

contrast 'R1 v 2 in D 1' rate 1 -1 date\*rate 1 -1 0 0 0 0;

# Factorial Experiments Shortcut for Writing Contrasts

Example: Seeding Date x Rate Study

$$\mu_{21} - \mu_{22}$$

| · - · · |    |    |   |  |  |  |  |
|---------|----|----|---|--|--|--|--|
|         | Ra |    |   |  |  |  |  |
| Date    | 1  | 2  | Σ |  |  |  |  |
| 1       | 0  | 0  | 0 |  |  |  |  |
| 2       | 1  | -1 | 0 |  |  |  |  |
| 3       | 0  | 0  | 0 |  |  |  |  |
| Σ       | 1  | -1 | 0 |  |  |  |  |

$$\mu_{31} - \mu_{32}$$

|      | Ra |    |   |
|------|----|----|---|
| Date | 1  | 2  | Σ |
| 1    | 0  | 0  | 0 |
| 2    | 0  | 0  | 0 |
| 3    | 1  | -1 | 0 |
| Σ    | 1  | -1 | 0 |

SAS code:

contrast 'R1 v 2 in D 2' rate 1 -1 date\*rate 0 0 1 -1 0 0;
contrast 'R1 v 2 in D 3' rate 1 -1 date\*rate 0 0 0 0 1 -1;

## **Factorial Experiments**

Example: Seeding Date x Rate Study

Simple Effects:

| Hypothesis            | df | Estimate | SS      | F        |
|-----------------------|----|----------|---------|----------|
| $\mu_{11} = \mu_{12}$ | 1  | -23.8    | 849.66  | 31.32**  |
| $\mu_{21} = \mu_{22}$ | 1  | -35.8    | 1922.46 | 70.86**  |
| $\mu_{31} = \mu_{32}$ | 1  | -48.03   | 3460.80 | 127.56** |

Conclusion: Rate has an effect at each date.

Example: Seeding Date x Rate Study

Linear Polynomial, Rate 1

| <u> </u> | Ra | nace |    |
|----------|----|------|----|
| Date     | 1  | 2    | Σ  |
| 1        | -1 | 0    | -1 |
| 2        | 0  | 0    | 0  |
| 3        | 1  | 0    | 1  |
| Σ        | 0  | 0    | 0  |

| Quadratic Polynomial, Rate 1 |
|------------------------------|
|------------------------------|

| <b>Q</b> 0.0.0.0.0.0.0 | Ra |   |    |  |
|------------------------|----|---|----|--|
| Date                   | 1  | 2 | Σ  |  |
|                        |    |   |    |  |
| 1                      | 1  | 0 | 1  |  |
| 2                      | -2 | 0 | -2 |  |
| 3                      | 1  | 0 | 1  |  |
| Σ                      | 0  | 0 | 0  |  |

#### SAS code:

contrast 'Date lin, Rate 1' date -1 0 1 date\*rate -1 0 0 0 1 0;
contrast 'Date quad, Rate 1' date 1 -2 1 date\*rate 1 0 -2 0 1 0;

## **Factorial Experiments**

Example: Seeding Date x Rate Study

### Simple Effects:

| Hypothesis     | df | SS       | MS       | F        |
|----------------|----|----------|----------|----------|
| Rate 1, linear | 1  | 2364.135 | 2364.135 | 87.14**  |
| Rate 1, quad   | 1  | 2915.934 | 2915.934 | 107.47** |
| Rate 2, linear | 1  | 6131.207 | 6131.207 | 225.98** |
| Rate 2, quad   | 1  | 2898.142 | 2898.142 | 106.82** |

Conclusion: the response to date was nonlinear for both seeding rates.





## Pseudo Factorial Experiments Redundant Control – Tall Fescue Example

| Sour | rce Urea Organic |   |    |     | Urea |     |    |    |     |     |     |
|------|------------------|---|----|-----|------|-----|----|----|-----|-----|-----|
| Ra   | te               | 0 | 50 | 100 | 150  | 200 | 0  | 50 | 100 | 150 | 200 |
| Rep  | 1                | 1 | 5  | 9   | 13   | 17  | 21 | 25 | 29  | 33  | 37  |
|      | 2                | 2 | 6  | 10  | 14   | 18  | 22 | 26 | 30  | 34  | 38  |
|      | 3                | 3 | 7  | 11  | 15   | 19  | 23 | 27 | 31  | 35  | 39  |
|      | 4                | 4 | 8  | 12  | 16   | 20  | 24 | 28 | 32  | 36  | 40  |

The control rate is the same for each source so you have additional replication of your zero application rate.



## Pseudo Factorial Experiments Redundant Control – SAS Code

# Pseudo Factorial Experiments Redundant Control – SAS Results

```
        Source
        DF
        Type III SS
        Mean Square F Value
        Pr > F

        Treatment
        9
        35472736.9
        3941415.2
        132.9
        <.0001</td>

        Contrast
        DF
        Contrast SS
        Mean Square F Value
        Pr > F

        Rate
        3
        18458040.7
        6152680.3
        207.46
        <.0001</td>

        Source
        1
        425189.53
        425189.53
        14.34
        0.0007

        R x S
        3
        20475.15
        6825.05
        0.23
        0.8747
```

# Pseudo Factorial Experiments Unbalanced Factorial – Tall Fescue Example

| Source |   | Control | Urea |     |     | Organic |    |     |     |     |
|--------|---|---------|------|-----|-----|---------|----|-----|-----|-----|
| Rate   |   | 0       | 50   | 100 | 150 | 200     | 50 | 100 | 150 | 200 |
| Rep    | 1 | 1       | 5    | 9   | 13  | 17      | 21 | 25  | 29  | 33  |
|        | 2 | 2       | 6    | 10  | 14  | 18      | 22 | 26  | 30  | 34  |
|        | 3 | 3       | 7    | 11  | 15  | 19      | 23 | 27  | 31  | 35  |
|        | 4 | 4       | 8    | 12  | 16  | 20      | 24 | 28  | 32  | 36  |

There is only one control rate. The remaining treatments are factorial combinations of rate and source, thus the imbalance in treatments.

## Pseudo Factorial Experiments Unbalanced Factorial – SAS Code